Jeg har netop skrevet dette spørgsmål til Sklansky på 2+2, så derfor er det på "engelsk" (beklager hvis mit dårlige engelsk er svært at forstå:-)).
Tager jeg fejl i nedenstående?
In "about this forum" you write that if anybody has a question for you they can sneak it in as a reply. I hope it is ok that i do it here.
The question is concerning your book No Limit Hold'em - Theory and Pratice page 216.
You write the following EV equation:
0=(0.935)($3)+(0.0645)[(0.433)($X+$3)+(0.567)(-$X)]
Shouldn't the part [(0.433)($X+$3)+(0.567)(-$X)] have been [(0.433)($X-$1+$3)+(0.567)(-$X)]?
Your opponent has already put a $2 big blind while you have only put the $1 small blind. When you push he therefore only has to call $X-$1.
For hands with high Sklansky-Chubukov numbers, like the AK hand in the example, this difference in the EV equation is of little practical importance, but i would guess that the difference in the Sklansky-Chubukov number for a hand like Q4 would be significantly affected by the extra $1.
Sklansky-Chubokov numbers
13-03-2007 15:09
#1|
0
14-03-2007 15:39
#4|
0
@bestbluff
Umiddelbart vil jeg give dig ret.
Sklansky skriver "[...] your stack is $X after posting small blind [...]".
Dvs. du raiser til $X+1 og da din modstander har lagt big blind skal han altså kun betale $X-1, så din gevinst hvis han kalder er 0.433 * ( $X-1 + $3).
Jørn
14-03-2007 15:43
#5|
0
Respekt for folk der finder fejl i Sklansky's matematik!
Glaeder mig til at hoere hans respons, keep us updated.
Du skal være logget ind for at kunne skrive et svar!